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ABSTRACT

Variations in rate of speech (ROS) produce changes in both
spectral features and word pronunciations that affect automatic
speech recognition (ASR) systems. To deal with these ROS
effects, we propose to use parallel, rate-specific, acoustic
models: one for fast speech, the other for slow speech. Rate
switching is permitted at word boundaries, to allow modeling
within-sentence speech rate variation, which is common in
conversational speech. Due to the parallel structure of rate-
specific models and the maximum likelihood decoding
method, we do not need high-quality ROS estimation before
recognition, which is usually hard to achieve. In this paper, we
evaluate our approach on a large-vocabulary conversational
speech recognition (LVCSR) task over the telephone, with
several minimal pair comparisons based on different baseline
systems. Experiments show that on a development set for the
2000 Hub-5 evaluation, introducing word-level ROS-
dependent models results in a 1.9% absolute win over a
baseline system without multiword pronunciation modeling,
and a 0.7% absolute win over a baseline system that
incorporates a 4.0% absolute win from multiword
pronunciation modeling.

1. INTRODUCTION

Rate of speech (ROS) is an important factor that affects the
performance of a transcription system [1],[2]. Possible reasons
are that some features commonly used in recognition systems
are duration related and clearly influenced by speech rate, such
as delta and delta delta features, and that some pronunciation
phenomena such as coarticulation and reduction are also
speech rate related. Thus, using rate-dependent acoustic
models seems to be a promising way to improve robustness
against speech rate variation.

In previous research work, rate-dependent acoustic models
were often used at the sentence level. In the typical framework,
an input utterance was first classified as fast or slow using a
ROS estimator, and then fed to a rate-specific system that was
tuned to fast or slow speech [2]. This method has two

drawbacks. First, it presumes that the speech rate within an
utterance is uniform, which is often not the case in
conversational speech. In our earlier research work on
broadcast news [3], we found that speech rate variation within
sentences is common, and thus we proposed to use a more
local rate dependency for the acoustic models. Second, this
approach is based on sequential classification, so errors on the
first ROS classification will most likely trigger errors in the
recognition step. This paper proposes a new approach of word-
level rate-dependent acoustic modeling. Under this approach,
each typical word is given two parallel rate-specific
pronunciations: a fast-version pronunciation and a slow-
version pronunciation, each consisting of rate-specific phones.
The recognizer is allowed to select the fast or the slow
pronunciation for each word automatically during search,
based on the maximum likelihood criterion. This way, we can
model the within-sentence speech rate variation, and avoid the
requirement of pre-recognition ROS classification. To train the
rate-specific phone models, we use a duration-based ROS
measure to partition the training data into rate-specific
categories. Due to the availabilit y of training transcriptions,
robust and accurate ROS estimation for training data can be
achieved.

In Section 2 we first introduce the ROS measure used for
partitioning the training data. In Section 3 we show the
experimental results of rate-dependent acoustic modeling
based on SRI’s 1998 evaluation system, and compare different
training approaches. In Section 4 we describe the work for the
LVCSR 2000 (Hub 5) evaluation system, and specifically
address the effect of multiwords in rate-dependent acoustic
modeling. Finally, in Section 5, we summarize our results.

2. ROS MEASURE

Two methods are typically used to estimate ROS of an input
utterance. One is based on phone durations, which are often
obtained from phone-level segmentations by using forced
alignments. When the utterance transcription is known, this



duration-based method can provide robust ROS estimation [2];
however, when the transcription is unknown, we can only use
the hypothesis from a prior recognition run, whose quali ty is
hard to guarantee. The second method involves estimating
ROS directly from the waveform or acoustic features of the
input utterance [4]. To achieve robust ROS estimation, the
computation is often based on a data window with sufficient
length.

Under our proposed approach, to train the rate-specific models
we need to partition the training data into rate-specific
categories at the word level, and we therefore need the ROS
for each word to be estimated locally. The output of this
process should give each word in the training transcription a
rate class label. As our first step to ROS modeling, we decided
to use only two ROS classes: fast or slow. Since we only need
to compute ROS for the training data that have transcriptions,
it is relatively straightforward to obtain the duration of each
word and its component phones by computing forced Viterbi
alignments, and then applying duration-based ROS estimation
methods.

Absolute ROS measures, such as phones per second (PPS) and
inverse mean duration (IMD) [2], were often used in previous
work. However, we felt that these measures are not
informative enough since they did not consider the fact that
different types of phones have different duration distributions.
Fig. 1 illustrates the duration distributions of 46 categories of
monophones estimated from the training corpus. As we can
see, the duration distribution across different phone types
differs substantially. When taking PPS or IMD as the ROS
measure, words composed of short phones are more easily
treated as fast than those composed of long phones, even
though they are not actually spoken faster than the normal rate.
In our approach, we use a relative ROS measure, R
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where W is a given word, D is the duration of W, and PW
(d) is

the probabil ity of that type of word having duration d. RW
(D) is

the probabil ity of W having a duration longer than D. The
measure RW

(D) always falls within the range [0,1], and can be
compared between different word categories. However in
practice, PW

(d) is hard to estimate directly due to the data
sparseness problem. To address this we assume that in a word
the duration distributions of its component subword units, such
as phones, are independent of each other. Thus, a word’s
duration distribution equals the convolution of its component
subword units’ distributions, which are easier to estimate from
training data. In our recent research, we used triphones as the
subword units for ROS estimation.

Figure 1: Duration distributions of different phone types

We used this measure to calculate the ROS for all the words in
the training data, and found that 80% of sentences with five or
more words have at least one word belonging to the fastest one
third and one word belonging to the slowest one third of all the
words. This suggests that in conversational speech, speech rate
is usually not uniform within a sentence.

In fact, the measure defined in Eq. (1) can also be applied to
subword units, thus allowing us to calculate the ROS of
phones. Using this measure, we studied the phone’s ROS
variation within words vs. within sentences. Fig. 2 shows a
histogram of the standard deviation of the phone’s ROS within
words and within sentences for all training data, suggesting
that the word is a better unit than the sentence for ROS
modeling, because the average phone-level ROS variation
within a word is significantly smaller than within a sentence.

Figure 2: Histogram of standard deviation of phone-level
ROS: within words vs. within sentences

3. RATE-DEPENDENT ACOUSTIC
MODELING

In our proposed method, each word is given parallel fast- and
slow-version pronunciations in the recognition lexicon. Both
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fast- and slow-version pronunciations are initialized from the
original rate-independent version, with the simple replacement
of rate-independent phones by rate-specific phones. For
example, the original rate-independent pronunciation of
“WORD” is /w er d/. Consequently the fast-version
pronunciation is /wf erf df/ and the slow-version /ws ers ds/,
consisting of fast and slow phones, respectively. The
recognizer automatically finds the best pronunciations that
maximize the likelihood score during the search, and thus
avoids the need for ROS estimation before recognition. In
addition, the search algorithm is allowed to select
pronunciations of different rates across word boundaries, thus
coping with the problem of speech rate variation within a
sentence.

3.1. Acoustic Training

Our initial experiments were based on SRI’s 1998 Hub-5
evaluation system, which uses continuous-density genonic
hidden Markov models (HMMs) [5]. The original evaluation
system used a multipass recognition strategy [6], but for the
sake of simplicity, we ran our experiments with only the first-
pass recognizer, based on gender-dependent non-crossword
genonic HMMs (1730 genones with 64 Gaussians each for
male, 1458 genones for female) and a bigram grammar with a
33,275-word vocabulary. The recognition lexicon was derived
from the CMU V0.4 lexicon with stress information stripped.
The recognizer used a two-pass (forward pass and backward
pass) Viterbi beam search algorithm; in the first pass a lexical
tree was used in the grammar backoff node to speed up search.
Below we report results from the backward pass. The features
used were 9 cepstral coefficients (C1-C8 plus C0) with their
first- and second-order derivatives in 10ms time frames. The
acoustic training corpus containing 121,000 male sentences
and 149,000 female sentences came from (A) Macrophone
telephone speech, (B) 3,094 conversation sides from the BBN-
segmented Switchboard-1 training set (with some hand-
corrections), and (C) 100 CallHome English training
conversations.

We first calculated the ROS for all the words in the training
corpus based on the above-mentioned measure, sorted these
words accordingly, and then split them into two categories:
fast and slow. The ROS threshold for split ting was selected to
achieve equal amounts of training data for the fast and the slow
speech. The training transcriptions were labeled accordingly.
We then prepared a special training lexicon: words with a fast
label were given the fast-version pronunciation, and words
with a slow label the slow-version pronunciation. In this way,
we were able to train the fast and slow models simultaneously.

We used DECIPHER genonic training tools to do standard
MLE (Maximum Likelihood Estimation) gender-dependent
training [5] and obtained rate-dependent models with 3233

genones for male speech and 2501 genones for female speech.
The genone clustering for rate-dependent models used the
same information loss threshold as the training of rate-
independent models.

We compared the rate-dependent acoustic model with the rate-
independent acoustic model (baseline system) on a
development data set, which is a subset of the 1998 Hub-5
evaluation data set, consisting of 1143 sentences from 20
speakers (9 male, 11 female). Table 1 shows the word error
rate (WER) for both models. Note that all the results reported
here are based on speaker-independent within-word triphone
acoustic models and bigram language models, and are
therefore not comparable with that of the full evaluation
system.

male female all
rate-independent model 55.3 63.4 59.8
rate-dependent model from training 52.9 61.9 57.9
Table 1: WER comparison between the baseline system with
rate-independent model and the system with rate-dependent
model on the development data set

Rate-dependent modeling brings an absolute WER reduction
of 1.9%, which is statistically significant. To eliminate the
possible effect of different numbers of parameters, we adjusted
the information loss threshold for genone clustering to obtain
another rate-independent model that had a number of
parameters similar to that of the rate-dependent model in size.
However, we did not observe any improvement from the
increased number of parameters. This suggests the win is
indeed due to the introduction of rate dependency.

3.2. Adaptation vs. Standard Training

In our previous work on the Broadcast News corpus (Hub 4)
[3], instead of using the training method described above, we
trained the rate-dependent model based on a modified
Bayesian adaptation scheme [7], by adapting the rate-
independent model to rate-specific data to obtain rate-specific
models. This was motivated by the small amount of available
training data relative to the model size. In [3], we used a
baseline system with a very large model comprising 256,000
Gaussians, and classified the training data into three
categories: fast, slow, and medium. For this model size the
training data was not sufficient to perform standard training.
However, in the current task of Hub-5 telephone speech
transcription we had significantly more training data, and we
used a different strategy to partition the data into two classes
instead of three, yielding more training data for each rate class.
In addition, the optimal models we started with were smaller.
Thus, we were able to train the rate-dependent model robustly
with standard training methods. For comparison we tested the
Bayesian adaptation approach that we used in [3] on the
current training set. Similar to [3], even though we used



separate rate-specific models for each triphone, we did not
create separate copies of the genones, but let the fast and slow
models for a given triphone share the same genone. In this
way, we used the same number of Gaussians for the rate-
dependent model as for the rate-independent model.

Table 2 shows the results on the same development data set we
used in the previous section. We see that this approach brings a
win of 1.0% over the baseline, less than the standard training
scheme. This indicates that the difference between fast and
slow speech in the acoustic space is significant, and that
standard training might be better than the previous adaptation
scheme to capture this difference. In fact, standard training
optimizes the parameter tying for the rate-dependent model,
reestimates the HMM transition probabiliti es, and performs
multiple iterations of parameter reestimation; whereas the
adaptation approach does not recompute genonic clustering,
does not change the transition probabilities, and includes only
one iteration of reestimation for the rate-dependent model on
top of the rate-independent model. These differences might
explain why the adaptation scheme did not achieve as much
improvement as the standard training.

male female all
rate-independent model 55.3 63.4 59.8
rate-dependent model from adaptation 54.0 62.6 58.8
Table 2: WER comparison between the baseline system with
rate-independent model and the system with rate-dependent
model from adaptation on the development set

4. EXPERIMENTS IN THE 2000 NIST
HUB-5 EVALUATION SYSTEM

For the March 2000 NIST Hub-5 benchmark, numerous
improvements were made to SRI’s 1998 evaluation system [8],
and the baseline system had been enhanced substantially.
Below we show some minimal pair experiments based on
different baseline systems during the development process.
The baseline system in Table 3 used a wider-band front end
(with 13 cepstral coeff icients instead of 9), and vocal tract
length (VTL) normalization [9] during training. As we can see,
the win from introducing word-level rate dependency is still
1.9%, over a baseline that was itself improved by 5.0%.

male female all
WER of baseline system 50.6 57.9 54.6
WER of rate-dependent system 49.2 55.6 52.7
Table 3: Minimal pair comparison based on an improved
baseline system using a wider front end and VTL
normalization on the development set

Another major addition to the evaluation system was the
introduction of multiword pronunciations. A multiword is a
high-frequency word bigram or trigram, such as “a lot of” , that
is handled as a single unit in the vocabulary. By using

handcrafted phonetic pronunciations describing various kinds
of pronunciation reduction phenomena for these multiwords,
we achieved better modeling of crossword coarticulation. In
SRI’ s 2000 evaluation system, 1389 multiwords were
introduced. Experiments showed that the multiword
pronunciation modeling brought about a 4.0% absolute win on
top of the improved baseline system in Table 3, [8].

We tried applying our rate-dependent modeling approach to
the multiword-augmented baseline system by treating the
multiwords as ordinary words. In this case, we obtained a
smaller win of  0.5% , as shown in Table 4. (Compared to
Table 3, a small part of the baseline WER reduction -- about
1.3% absolute -- comes from other improvements, such as
variance normalization and pronunciation probabiliti es.)

male female all
WER of baseline system 44.3 53.3 49.3
WER of rate-dependent system 43.6 53.0 48.8
Table 4: Minimal pair comparison based on a multiword-
augmented baseline system on the development set

The possible reasons for the diminished effectiveness of ROS
modeling may lie in the following aspects. First, each
multiword is given multiple parallel pronunciations reflecting
both full and reduced forms. This by itself models fast and
slow speech variants to some extent. However, since this
affects only the 1389 multiwords, there should stil l be room for
improvement from rate-dependent modeling. Second, by
treating multiwords as ordinary words, we fail to model the
rate variation occurring within the multiwords, and thus may
influence the quality of the rate-dependent acoustic models.
Third, due to our current implementation, the introduction of
multiwords made the search much more expensive than before;
rate-dependent modeling on top of the multiword dictionary
made this problem even worse, and may have produced a loss
in performance due to search pruning.

Based on the above analysis, we tested another scheme:
instead of treating multiwords as ordinary words we trained
them with multiword-specific phone units, that is, using
separate phonetic models to describe the multiwords. Similar
to the original approach, we trained three classes of phone
models simultaneously: fast models for ordinary words, slow
models for ordinary words, and a separate set of phone models
trained only on the multiword data. With this approach, we
improved the WER reduction to 0.7%, as shown in Table 5.

male female all
WER of baseline system 44.3 53.3 49.3
WER of rate-dependent system 43.6 52.6 48.6
Table 5: Minimal pair comparison on the development set
between the multiword-augmented baseline system and the
rate-dependent system with multiword-specific phone models



Finally, we replicated the same experiment on the 2000 Hub-5
evaluation data set, which contains 4466 sentences from 80
speakers (29 male, 51 female), also obtaining a win of 0.7%
absolute (which is statistically significant for this data set), as
listed in Table 6.

male female all
WER of baseline system 40.0 41.8 41.2
WER of rate-dependent system 39.7 41.0 40.5
Table 6: Minimal pair comparison on the 2000 NIST Hub-5
evaluation set between the multiword-augmented baseline
system and the rate-dependent system with multiword-specific
phone models

5. CONCLUSIONS AND FUTURE WORK

We proposed a rate-dependent acoustic modeling scheme,
which is able to model within-sentence speech rate variation,
and does not rely on ROS estimation prior to recognition.
Experiments show that this method results in a 1.9% (absolute)
word error rate reduction on a Hub-5 telephone speech
transcription test set. When combined with multiword
pronunciation modeling, our method led to a win of 0.7% on
the same data set, and a statistically significant win of 0.7% on
the LVCSR 2000 evaluation set.

Our current approach uses identical pronunciations but
different phone units to model fast versus slow speech. We are
currently investigating several alternative approaches, such as
making both phones and pronunciations rate specific, and a
more general way to account for crossword pronunciation
variation that does not require multiwords.
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